
Software Architecture
Software Engineering - 2017

Alessio Gambi - Saarland University

These slides are based the slides from Cesare Pautasso and Christoph Dorn, and updated from
various sources.

Architecture

Design in the Large
• Objects and methods

• Modules and components

• Large and complex systems

• Systems of systems

Design in the Large

• Size of the team

• Lifetime of the project

• Cost of development

• Objects and methods

• Modules and components

• Large and complex systems

• Systems of systems

Building software as we
build buildings ?

• Software is complex, so are
buildings (blueprint)

• Architecture implies a systematic
process for design and
implementation

• Architects put together pieces and
materials, they usually do not invent
new materials

It’s just an analogy !
• We know a lot about buildings

(2000+ years), much less about
software

• Software systems do not obey to
physical laws

• Software deployment has no
counterpart in building architecture

Software Architecture

A software system’s architecture is the
set of principal design decisions made

about the system.

N. Taylor et al.

Software Architecture

A software system’s architecture is the
set of principal design decisions made

about the system.

N. Taylor et al.

Where do the pillars go? Where do the chairs go?

Abstraction

Manage complexity in the design

Communication

Document, remember and share design
decisions among the team

Visualization

Depict and highlight important aspects

Representation

Characterize components and behaviors

Quality Analysis

Understand, predict, and control

When SW Architecture Start ?

Since the
beginning of
design!

When SW Architecture Stop ?

Never!
When SW Architecture Stop ?

Architecture is NOT a development phase

Architecture is NOT only “high-level” design

Every System an Architecture has

Every System an Architecture has

Every System an Architecture has

Architectural Evolution

Decisions are added and changed by multiple actors…
sometimes without knowing it

Architectural Degradation

P

Architectural Degradation

PD
Ideal P=D

Architectural Degradation

P D
Ideal P=D

Drift P !=D and D does not violate P

Architectural Degradation

P D
Ideal P=D

Drift P !=D and D does not violate P

Erosion P !=D and D violates P

Summary
• Blueprint for construction and evolution

abstraction • principal design decisions

• Not only about design
communicate • visualize • represent • assess

• Every system has (an evolving) one
descriptive • prescriptive • drift • erosion

• Not a phase, not only “high-level” design

Design

How to Design
Even the best architects copy solutions that have
proven themselves in practice, adapt them to the

current context, improve upon their weaknesses, and
then assemble them in novel ways

How to Design
Even the best architects copy solutions that have
proven themselves in practice, adapt them to the

current context, improve upon their weaknesses, and
then assemble them in novel ways

How to Design
Even the best architects copy solutions that have
proven themselves in practice, adapt them to the

current context, improve upon their weaknesses, and
then assemble them in novel ways

Architectural Hoisting

George Fairbanks - http://georgefairbanks.com/blog/architectural-hoisting-original/

Design the architecture with the intent to guarantee
a certain quality of the system.

Architectural Hoisting

George Fairbanks - http://georgefairbanks.com/blog/architectural-hoisting-original/

Design the architecture with the intent to guarantee
a certain quality of the system.

Security place sensitive data behind the firewall

Scalability make critical components stateless

Persistence use a database

Extensibility use a plug-in framework

What makes a “good” SW
Architecture?

• No such things like perfect design and inherently
good/bad architecture

• Fit to some purpose, and context-dependent

What makes a “good” SW
Architecture?

• No such things like perfect design and inherently
good/bad architecture

• Fit to some purpose, and context-dependent

• Principles, guidelines and the use of collective
experience (method)

Design Principles

Architectural Patterns

Architectural Styles

Design Principles
• Abstraction

• Encapsulation - Separation of Concerns

• Modularization

• KISS (Keep it simple, stupid)

• DRY (Don’t repeat yourself)

Architectural Patterns
Set of architectural design decisions that are

applicable to a recurring design problem, and are
parameterized to account for the development

contexts in which that problem appears.

Architectural Patterns
Set of architectural design decisions that are

applicable to a recurring design problem, and are
parameterized to account for the development

contexts in which that problem appears.

Layered Component
Notification Composition

Layered Patterns
• State-Logic-Display

separate elements with different rate of change

• Model-View-Controller
support many interaction and display modes for the same
content

• Presenter-View
keep a consistent look and feel across a complex UI

State-Logic-Display

cluster elements that change at the same rate

Model-View-Controller
separate content (model) from presentation (output) and

interaction (input)

Presenter-View

extract the content from the model to be presented
from the rendering into screens/web pages

Component Patterns
• Interoperability

enable communication between different platforms

• Directory
facilitate location transparency (direct control)

• Dependency Injection
facilitate location transparency (inversion of control)

Interoperability
map to a standardized intermediate representation and

communication style

Directory
use a directory service to find service endpoints based on

abstract descriptions

Dependency Injection
use a container which updates components with

bindings to their dependencies

Notification Patterns
• Event Monitor

inform clients about events happening at the service

• Observer
promptly inform clients about state changes of a service

• Publish/Subscribe
decouple clients from services generating events

• Messaging Bridge
connect multiple messaging systems

• Half Synch/Half Async
interconnect synchronous and asynchronous components

Event Monitor
poll and compare state snapshots

Observer
detect changes and generate events at the service

Publish/Subscribe
factor out event propagation and subscription management

into a separate service

Messaging Bridge
link multiple messaging systems to make messages

exchanged on one also available on the others

Half-Sync/Half-Async
Add a layer hiding asynchronous interactions behind a

synchronous interface

Composition Patterns
• Scatter/Gather

send the same message to multiple recipients which will/may reply

• Canary Call
avoid crashing all recipients of a poisoned request

• Master/Slave
speed up the execution of long running computations

• Load Balancing
speed up and scale up the execution of requests of many clients

• Orchestration
improve the reuse of existing applications

Scatter/Gather
combine the notification of the request with

aggregation of replies

Canary Call
use an heuristic to evaluate the request

Master/Slave
split a large job into smaller independent

partitions which can be processed in parallel

Load Balancing
deploy many replicated instances of the server

on multiple machines

Composition/Orchestration
build systems out of the composition of existing ones

Patterns, Patterns, Patterns
Architectural Patterns not Design Patterns

Architectural Design

Patterns, Patterns, Patterns

Express fundamental
structural organizations

Specify relationships
among (sub-)systems

Capture roles in solutions
that occur repeatedly

Define the relationships
among roles

Architectural Patterns not Design Patterns

Architectural Design

Architectural Styles

Named collections of architectural decisions and
constrains for a specific development context that elicit

beneficial qualities in each resulting system

Why Styles?

A common vocabulary for the design elements
improve communication by shared understanding

A predefined configuration and composition rules
known benefits and limitations
ensure quality attributes if constraints are followed

Style-specific analyses and visualizations

Styles and Patterns

One style is dominant

The same pattern can be
used many times

Many patterns are
combined

General constraints Fine-grained constraints

Architecture with 
superior properties

Specific to recurrent
problems

Styles must be refined
and adapted

Many (and Many More)

Monolithic
• Lack of structure

• No Constraints

• Poor Maintainability

• Possibly Good Performance

Mainframe COBOL programs ∙ powerpoint ∙ many games

Layered
• Communications 1 layer up/down

• Information hiding, no circular deps

• Possibly bad performance

• Good evolvability

Network protocol stacks ∙ Web applications ∙ Virtual Machines

Component Based
• Encapsulation

• Information hiding

• Components compatibility problem

• Good reuse, independent development

CORBA ∙ Enterprise JavaBean ∙ OSGi

Service Oriented
• Components might be outside control

• Standard connectors, precise interfaces

• Interface compatibility problem

• Loose coupling, reuse

Web Services (WS-*) ∙ Cloud Computing

Plugin
• Explicit extension points

• Static/Dynamic composition

• Low security (3rd party code)

• Extensibility and customizability

Eclipse ∙ Photoshop ∙ Browsers’ extensions

Pipe & Filter
• Clean separation: filter process, pipe

transport

• Heterogeneity and distribution

• Only batch processing, serializable data

• Composability, Reuse

UNIX shell ∙ Compiler ∙ Graphics Rendering

Black Board
• Collective problem solving via shared data

• Asynchronous components interactions

• Requires common data format

• Loose coupling, implicit data flow

Database ∙ Tuple space ∙ Expert systems (AI)

Event Driven
• Produce/React to events

• Asynchronous signals/messages

• Difficult guarantee performance

• Loose coupling, scalable

Sensor Monitoring ∙ Complex Event Processing

Event Driven
• Produce/React to events

• Asynchronous signals/messages

• Difficult guarantee performance

• Loose coupling, scalable

Sensor Monitoring ∙ Complex Event Processing

Event Driven
• Produce/React to events

• Asynchronous signals/messages

• Difficult guarantee performance

• Loose coupling, scalable

Sensor Monitoring ∙ Complex Event Processing

Publish/Subscribe
• Event driven + opposite roles

• Subscription to queues or topics

• Limited scalability

• Loose coupling

Twitter ∙ RSS Feeds ∙ Email

Publish/Subscribe
• Event driven + opposite roles

• Subscription to queues or topics

• Limited scalability

• Loose coupling

Twitter ∙ RSS Feeds ∙ Email

Publish/Subscribe
• Event driven + opposite roles

• Subscription to queues or topics

• Limited scalability

• Loose coupling

Twitter ∙ RSS Feeds ∙ Email

Client/Server
• Many clients, active, close to users

• One server, passive, close to data

• Single point of failure, scalability

• Security, scalability

Web Browser/server ∙ Databases ∙ File Servers ∙ Git/SVN

Client/Server
• Many clients, active, close to users

• One server, passive, close to data

• Single point of failure, scalability

• Security, scalability

Web Browser/server ∙ Databases ∙ File Servers ∙ Git/SVN

Peer to Peer
• Both server and client at the same time

• Dynamic join/leave

• Difficult administration, data recovery

• Scalability, dependability/robustness

File Sharing ∙ Skype (mixed style) ∙ Distributed Hash Tables

Data Centric
• Persistence layer

• Black board like

• Single point of failure

• (Eventual) Consistency (BASE/ACID)

Relational DB ∙ Key-Value Stores

Rule Based
• Rules dynamically triggered

• Layered

• Possibly hard to understand and maintain

• Evolvability

Business Rule Engines ∙ Expert Systems ∙ Prolog

Rule Based
• Rules dynamically triggered

• Layered

• Possibly hard to understand and maintain

• Evolvability

Business Rule Engines ∙ Expert Systems ∙ Prolog

Mobile Code
• Code migrates (weak)

• Code+execution state migrate (strong)

• Security

• Fault tolerance, performance

JavaScript ∙ Flash ∙ Java Applets ∙ Mobile Agents ∙ Viruses

REST
• Hybrid style

• Stateless interactions/Stateful
resources

• Loose coupling, scalability,
interoperability

World Wide Web ∙ RESTFul Web APIs

Summary
• A great architecture likely combines aspects of

several other architectures

• Do no limit to just one pattern, but avoid the use of
unnecessary patterns

• Different styles lead to architectures with different
qualities, and so might do the same style

• Never stop at the choice of patterns and styles:
further refinement is always needed

Modeling

Why modeling?

• Record decisions

• Communicate decisions

• Evaluate decisions

• Generate artifacts

The problem (Domain model)

The problem (Domain model)

The environment
System context
Stakeholders

The system-to-be ()
Static and dynamic architecture

The problem (Domain model)

The environment
System context
Stakeholders

Design Model

The system-to-be ()
Static and dynamic architecture

Quality attributes and  
non-functional propertiesThe problem (Domain model)

The environment
System context
Stakeholders

Design Model

The system-to-be ()
Static and dynamic architecture

Quality attributes and  
non-functional propertiesThe problem (Domain model)

The environment
System context
Stakeholders

The design process
Design Model

Design Model

System Context
Interfaces/API
Quality Attributes

Boundary Model

Externally visible behavior

Design Model

Software Components
Software Connectors
Component assembly

System Context
Interfaces/API
Quality Attributes

Boundary Model Internal Model

Internal behaviorExternally visible behavior

Reusable unit of composition
Can be composed into larger systems

State in a system

Software Components

Locus of computation

Reusable unit of composition
Can be composed into larger systems

State in a system

Software Components

Application-specific
Media Player
Math Library

Web Server
Database

Locus of computation

Infrastructure

Composition vs Distribution

Component Roles

Components

Modules

Objects

Encapsulate state and functionality
Coarse-grained
Black box architecture elements
Structure of architecture

Encapsulate state and functionality
Fine-grained
Can “move” across components
Identifiable unit of instantiation

Rarely exist at run time
May require other modules to compile
Package the code

Component Interfaces

Provided Interfaces
• Specify and document the externally visible

features (or public API) offered by the component  

- Data types and model
- Operations
- Properties
- Events and call-backs

Required Interface

• Specify the conditions upon which a component
can be (re)used
- The platform is compatible
- The environment is setup correctly

Compatible Interfaces

Adapter Wrapper

Software Connectors

Model static and dynamic aspects of the  
 interaction between component interfaces

Connector Roles
• Communication  

 deliver data and transfer of control

• Coordination 
 separate control from computation

• Conversion 
 enable interaction of mismatched components

• Facilitation/Mediation 
 govern access to shared information

not always directly visible in the code

mostly application-independent

Connectors are abstractions

When to hide components inside a connector?

Remote Procedure Call

• Call

Remote Procedure Call

• Call

Message Bus

• Publish

• Subscribe

• Notify

• Get

• Put

• Post

• Delete

Web

Views and Viewpoints

Viewpoint View
A subset of related

architectural design decisions
The common concerns

shared by a view

Views are not always orthogonal and might
become inconsistent if design decision are not
compatible (erosion)

Consistency

4+1

Philippe Kruchten

Logical View Development View

Physical ViewProcess View

Use Case
Scenarios

Use Case Scenarios

• Unify and link the elements of the other 4 views

• Help to ensure the architectural model addresses all
the requirements

• Each scenario can be illustrated using the other 4
views

MusicApp Example

Use Case Scenarios
✴ Browse for new songs

✴ Buy song

✴ Download the purchased song on the phone

✴ Play the song

Logical View

• Decompose the system structure into software
components and connectors

• Map functionalities (use cases) onto the
components

Process View

• Model the dynamic aspects of the architecture and
the behavior of its parts

• Describe how components/processes communicate

Use Cases: Browse, Pay and Play For Songs

Development View

• Static organization of the software code artifacts

• Map elements in the logical view and the code
artifacts

Physical View

• Hardware environment where the software will be
deployed

• Map logical and physical entities

References and Readings
• Textbooks
• R. N. Taylor, N. Medvidovic, E. M. Dashofy, Software Architecture: Foundations, Theory, and

Practice, Wiley, January 2009.

• G. Fairbanks, Just Enough Software Architecture: A Risk-Driven Approach, Marshall & Brainerd,

August 2010.

• Amy Brown and Greg Wilson (eds.) The Architecture of Open Source Applications, 2012.

• References
• Mary Shaw and David Garlan, Software Architecture: Pespectives on an Emerging Discipline,

Prentice-Hall, 1996

• Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal Pattern

Oriented Software Architecture: A System of Patterns, Wiley, 1996

• William Brown, Raphael Malveau, Hays McCormick, Thomas Mowbray, Anti Patterns:

Refactoring Software, Architectures, and Projects in Crisis, Wiley, 1992

• Clemens Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd Edition,

Addison-Wesley, 2002

• Len Bass, Paul Clements, Rick Kazman, Ken Bass, Software Architecture in Practice, 2nd

Edition, Addison-Wesley, 2003

• Martin Fowler, Patterns of Enterprise Application Architecture, Addison Wesley, 2002

• Luke Hohmann, Beyond Software Architecture: Creating and Sustaining Winning Solutions,

Addison-Wesley, 2003

• Ian Gorton, Essential Software Architecture, Springer 2006

